COUNTING ORDERED COMBINATIONS

In counting combinations, sometimes the order matters. There is a difference
between putting on your sock and then your shoe, versus putting on your shoe
and then your sock! If we have two variables x and y, there are four unordered
combinations of degree three:

But if order matters, there are eight:

rrx, TrxryY, TYx, Yrr, ITYY, YIYy, Yyr, Yyy.

How can we count these ordered combinations? Here’s an approach based on the
“symbolic series” method of the text. Let S be the sum of all the ordered monomials
in two variables x and y (and we throw in 1 for the empty monomial):

S =1+z+y+zr+ayt+yr+yy+rrr+rry+ryr+yre+ryy+yry+yyr+yyy+- - -

Now since the order matters, every monomial (other than 1) must start with either
x or y. If we group these two sets of terms, we have

S=14z(l+z+y+zx+zy+yx+yy+---)+
yl+z+y+zz+ozy+yr+yy+---),

or S =1+xz5+ yS. We solve this formally to get
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whatever that means. Let’s try to make sense out of equation (1) by replacing each
monomial m by t/™l, where |m| is the degree of m. Then S becomes the generating
function S(¢) that counts ordered monomials by degree, and equation (1) becomes
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S(t) =142t + 48>+ 83 + - -

Clearly the coefficient of ¢t is 2™, so there are 2" ordered monomials of degree
n in z and y (or to put it another way, there are 2" monomials of degree n in
noncommuting variables x and y). This is really pretty obvious: in a monomial of
degree n, you have n factors and two choices (x or y) for each factor. (Why doesn’t
this reasoning work if z and y are allowed to commute?)
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Ezercise 1. Recall from the previous set of notes that there are (";2) monomials of

degree n in three commuting variables z, y, and z. How many distinct monomials
of degree n are there if x, y, and z don’t commute?

As the example of monomials shows, it’s actually easier to count things when
you keep track of the order. Here’s another example. The ordered version of a
partition is called a composition. Thus, 3 + 1 and 1 + 3 are considered distinct
compositions of 4 (even though they represent the same partition). If we leave out
the plus signs, we can write the eight compositions of 4 as

(1111), (211), (121), (112), (22), (31), (13), (4).

Let C be the symbolic sum of all compositions (with ( ) as the empty composition
of 0). Then

C = () + 1)+ (11)+(2)+ (111) + (21) + (12) + (3) + (1111) + (211) + (121) + (112)
+(22) + (31) + (13) + (4) + - -

Now every composition must start with 1, or 2, or 3, etc. So if we define “multipli-
cation” of compositions by juxtaposition (e.g., (2) % (11) = (211)), then

C=()+D)*xC+2)xC+3)*xC+---

or formally

2) C = ())

Let’s try to make sense of equation (2) as we did with equation (1): replace each
composition ¢ by 1l where |c| is the weight of ¢ (the sum of its parts). This takes
C' to the generating function C(t) that counts compositions by weight, so equation
(2) becomes

1 1 1-1
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C(t)

Now

1-t 1 t
1—2t 1—-2t 1-—2t
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n>0 n>0

-1+ 2(271 . 2n—1)tn

n>1

=1+ Z 2n—1tn7

n>1

So there are 2"~ compositions of n.
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Actually there is an easier way to see that n has 2"~! compositions: think of a
row of n dots. If you insert dividers into some of the n — 1 positions between the
dots, you specify a composition of n. Since each of the n — 1 positions can have a
divider or not, that’s 2”71 choices. But the generating-function method is flexible
enough to handle many related questions, such as the one in the next exercise.

Ezxercise 2. Let (), be the number of compositions of n in which all the parts are
1’s and 2’s. For example, ()5 = 8 because there are eight such compositions of 5:

(11111), (2111), (1211), (1121), (1112), (221), (212), (122).

Find the generating function

Q) =1+ Qnt™

n>1

Does this look like a generating function we’ve seen before?

We can apply the same techniques to counting planar rooted trees. Let P, be
the number of planar rooted trees with n vertices. Then Py = 5 since there are five
planar rooted trees with 4 vertices:

A

Now let’s let F,, be the number of ordered rooted forests of planar rooted trees. If
we form a symbolic sum of all ordered forests, it looks like

F=0+e+ee+ I +ooet I °te I + 4+ /\ o+
Since every nonempty ordered forest has a first tree, we can write this as

Fo AFto

F:(b+oF+I F+

or

(3) F=

0

o [ A

As with equations (1) and (2), we interpret equation (3) by replacing each symbol
with ¢, where w is the symbol’s weight (in this case, the number of vertices). Then
equation (3) becomes

1

1+ Byt + Fot* +--- = :
LR 1— Pt — Pyt2 — P33 — .-
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But every ordered forest of planar rooted trees with n vertices corresponds to a
planar rooted tree with n + 1 vertices, so F;, = P,+1 and the preceding equation is

1
4 14 Pyt + P3t? + Pyt = .
(4) + Pot + P3t”™ + Py PPy~ Pi® — .

This is much easier than the equation we had in the previous set of notes. For if
we let P(t) = 1+ Pyt + Pyt? + - -, then equation (4) multiplied by ¢ is

t

PO ~1= 5=

or
P(t)®> —3P(t)+t+2=0.

Solve this using the quadratic formula to get

P(t)_B—\/9—4(t+2) 3—1—4t

2 2 ’

where we have chosen the negative square root to get P(0) = 1. But this says

1—+/1—4t
Pty=1+ ————,
2
and comparison with the generating function for Catalan numbers shows P, = C,_1
for n > 1. Of course this is the same result we had earlier via our isomorphism of
planar trees with parenthesized products.



